
Rodriguez, B. J. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).
Google Scholar
Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).
Google Scholar
Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).
Google Scholar
Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).
Google Scholar
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Google Scholar
Liu, Y. et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett. 17, 7258–7266 (2017).
Google Scholar
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Google Scholar
Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2423 (2020).
Google Scholar
Luk’yanchuk I., Razumnaya A., Kondovych S., Tikhonov Y. & Vinokur V. M. Topological ferroelectric chirality. Preprint at https://arxiv.org/abs/2406.19728 (2024).
Naumov, I. I., Bellaiche, L. & Fu, H. X. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Google Scholar
Jung, H. et al. Logic operations based on magnetic-vortex-state networks. ACS Nano 6, 3712–3717 (2012).
Google Scholar
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
Google Scholar
Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81–88 (2012).
Google Scholar
Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).
Google Scholar
Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).
Google Scholar
Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).
Google Scholar
Sawaguchi, E., Maniwa, H. & Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078–1078 (1951).
Google Scholar
Corker, D. L., Glazer, A. M., Dec, J., Roleder, K. & Whatmore, R. W. A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Cryst. B 53, 135–142 (1997).
Google Scholar
Sapriel, J. Domain-wall orientations in ferroelastics. Phys. Rev. B 12, 5128–5140 (1975).
Google Scholar
Liu, Y. et al. Controlled growth and atomic-scale mapping of charged heterointerfaces in PbTiO3/BiFeO3 bilayers. ACS Appl. Mater. Interfaces 9, 25578–25586 (2017).
Google Scholar
Wang, W. Y. et al. Atomic level 1D structural modulations at the negatively charged domain walls in BiFeO3 films. Adv. Mater. Interfaces 2, 1500024 (2015).
Google Scholar
Tang, Y. L. et al. Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films. Sci. Rep. 4, 4115 (2014).
Google Scholar
Ma, T., Fan, Z., Tan, X. & Zhou, L. Atomically resolved domain boundary structure in lead zirconate-based antiferroelectrics. Appl. Phys. Lett. 115, 122902 (2019).
Google Scholar
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Google Scholar
Liu, Y. et al. Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO3. Phys. Rev. Lett. 130, 216801 (2023).
Google Scholar
Liu, Y. et al. Atomic coordinates and polarization map around a pair of 1/2 a[01\(\bar{1}\)] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT. J. Appl. Phys. 129, 234101 (2021).
Google Scholar
Cabral, M. J., Chen, Z. & Liao, X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 3, 2023040 (2023).
Google Scholar
Moore, K. et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film. ACS Appl. Mater. Interfaces 14, 5525–5536 (2022).
Google Scholar
Hong, Z. et al. Vortex domain walls in ferroelectrics. Nano Lett. 21, 3533–3539 (2021).
Google Scholar
Li, F., Nattermann, T. & Pokrovsky, V. L. Vortex domain walls in helical magnets. Phys. Rev. Lett. 108, 107203 (2012).
Google Scholar
Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
Google Scholar
Zhang, H. et al. Finite-temperature properties of the antiferroelectric perovskite PbZrO3 from a deep-learning interatomic potential. Phys. Rev. B 110, 054109 (2024).
Google Scholar
Shapovalov, K. & Stengel, M. Tilt-driven antiferroelectricity in PbZrO3. Phys. Rev. Mater. 7, L071401 (2023).
Google Scholar
Abid, A. Y. et al. Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021).
Google Scholar
Hu, T. et al. Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 46, 22575 (2020).
Google Scholar
Sánchez-Santolino, G. et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).
Google Scholar
MacLaren, I., Villaurrutia, R., Schaffer, B., Houben, L., & Peláiz-Barranco, A. Atomic-scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum-doped lead zirconate titanate. Adv. Funct. Mater. 22, 261–266 (2012).
Google Scholar
Fu, Z. et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat. Commun. 11, 3809 (2020).
Google Scholar
Ma, T. et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys. Rev. Lett. 123, 217602 (2019).
Google Scholar
Wei, X.-K., Jia, C.-L., Roleder, K., Dunin-Borkowski, R. E. & Mayer, J. In situ observation of point-defect-induced unit-cell-wise energy storage pathway in antiferroelectric PbZrO3. Adv. Funct. Mater. 31, 2008609 (2021).
Google Scholar
Thompson, A. P., Aktulga, H. M. & Berger, R. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Google Scholar