• May 20, 2025
  • Live Match Score
  • 0


  • Rodriguez, B. J. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett. 17, 7258–7266 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2423 (2020).

    Article 

    Google Scholar 

  • Luk’yanchuk I., Razumnaya A., Kondovych S., Tikhonov Y. & Vinokur V. M. Topological ferroelectric chirality. Preprint at https://arxiv.org/abs/2406.19728 (2024).

  • Naumov, I. I., Bellaiche, L. & Fu, H. X. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, H. et al. Logic operations based on magnetic-vortex-state networks. ACS Nano 6, 3712–3717 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81–88 (2012).

    Article 
    CAS 

    Google Scholar 

  • Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 82, 729–732 (1951).

    Article 
    CAS 

    Google Scholar 

  • Shirane, G., Sawaguchi, E. & Takagi, Y. Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951).

    Article 
    CAS 

    Google Scholar 

  • Sawaguchi, E., Maniwa, H. & Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078–1078 (1951).

    Article 
    CAS 

    Google Scholar 

  • Corker, D. L., Glazer, A. M., Dec, J., Roleder, K. & Whatmore, R. W. A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Cryst. B 53, 135–142 (1997).

    Article 

    Google Scholar 

  • Sapriel, J. Domain-wall orientations in ferroelastics. Phys. Rev. B 12, 5128–5140 (1975).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Controlled growth and atomic-scale mapping of charged heterointerfaces in PbTiO3/BiFeO3 bilayers. ACS Appl. Mater. Interfaces 9, 25578–25586 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, W. Y. et al. Atomic level 1D structural modulations at the negatively charged domain walls in BiFeO3 films. Adv. Mater. Interfaces 2, 1500024 (2015).

    Article 

    Google Scholar 

  • Tang, Y. L. et al. Atomic-scale mapping of dipole frustration at 90° charged domain walls in ferroelectric PbTiO3 films. Sci. Rep. 4, 4115 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, T., Fan, Z., Tan, X. & Zhou, L. Atomically resolved domain boundary structure in lead zirconate-based antiferroelectrics. Appl. Phys. Lett. 115, 122902 (2019).

    Article 

    Google Scholar 

  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO3. Phys. Rev. Lett. 130, 216801 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Atomic coordinates and polarization map around a pair of 1/2 a[01\(\bar{1}\)] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT. J. Appl. Phys. 129, 234101 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cabral, M. J., Chen, Z. & Liao, X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 3, 2023040 (2023).

    Article 
    CAS 

    Google Scholar 

  • Moore, K. et al. Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film. ACS Appl. Mater. Interfaces 14, 5525–5536 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, Z. et al. Vortex domain walls in ferroelectrics. Nano Lett. 21, 3533–3539 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, F., Nattermann, T. & Pokrovsky, V. L. Vortex domain walls in helical magnets. Phys. Rev. Lett. 108, 107203 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. et al. Finite-temperature properties of the antiferroelectric perovskite PbZrO3 from a deep-learning interatomic potential. Phys. Rev. B 110, 054109 (2024).

    Article 
    CAS 

    Google Scholar 

  • Shapovalov, K. & Stengel, M. Tilt-driven antiferroelectricity in PbZrO3. Phys. Rev. Mater. 7, L071401 (2023).

    Article 
    CAS 

    Google Scholar 

  • Abid, A. Y. et al. Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, T. et al. Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceram. Int. 46, 22575 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sánchez-Santolino, G. et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacLaren, I., Villaurrutia, R., Schaffer, B., Houben, L., & Peláiz-Barranco, A. Atomic-scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum-doped lead zirconate titanate. Adv. Funct. Mater. 22, 261–266 (2012).

    Article 
    CAS 

    Google Scholar 

  • Fu, Z. et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat. Commun. 11, 3809 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, T. et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys. Rev. Lett. 123, 217602 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, X.-K., Jia, C.-L., Roleder, K., Dunin-Borkowski, R. E. & Mayer, J. In situ observation of point-defect-induced unit-cell-wise energy storage pathway in antiferroelectric PbZrO3. Adv. Funct. Mater. 31, 2008609 (2021).

    Article 
    CAS 

    Google Scholar 

  • Thompson, A. P., Aktulga, H. M. & Berger, R. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar 


  • Leave a Reply

    Your email address will not be published. Required fields are marked *